Skip to main content
Log in

Joint channel estimation and data detection for OFDM based cooperative system

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Orthogonal frequency division multiplexing based cooperative system using Alamouti space–time block coding at relay node represents an alternative solution to achieve better connectivity and significant enhancement to the data rate in wireless fading channels. But, these advantages cannot be achieved without an efficient estimation of the channels which becomes more challenging for cooperative communications. This paper addresses the joint channel estimation and data detection for cooperative communication systems. Indeed, equispaced pilot symbols are used by maximum likelihood (ML) algorithm to derive channels estimator, and then equalizers are calculated and applied to improve receiver data detection. The main contribution of our work is the development of the ML estimator, the corresponding Cramer–Rao lower bound, mean square error, signal to interference plus noise ratio, outage probability, bit error probability and the use of simulations to demonstrate the superior performances of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperative diversity—Part I: System description; Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications,51, 1927–1948.

    Article  Google Scholar 

  2. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine,42(10), 74–80.

    Article  Google Scholar 

  3. Khattabi, Y. M., & Matalgah, M. M. (2016). Performance analysis of multiple-relay AF cooperative systems over rayleigh time-selective fading channels with imperfect channel estimation. IEEE Transactions on Vehicular Technology,65(1), 427–434.

    Article  Google Scholar 

  4. Laneman, J. N., Tse, N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory,50, 3062–3080.

    Article  Google Scholar 

  5. Kim, K. J., Khan, T. A., & Orlik, P. V. (2017). Performance analysis of cooperative systems with unreliable backhauls and selection combining. IEEE Transactions on Vehicular Technology,66, 2448–2461.

    Article  Google Scholar 

  6. Stüber, G. L., Barry, J. R., Mclaughlin, S. W., Li, Y., Ingram, M. A., & Pratt, T. G. (2004). Broadband MIMO–OFDM wireless communications. Proceedings of the IEEE,92(2), 271–294.

    Article  Google Scholar 

  7. Scutari, G., & Barbarossa, S. (2005). Distributed space–time coding for regenerative relay networks. IEEE Transactions on Wireless Communications,4(5), 3524–3536.

    Article  Google Scholar 

  8. Shin, O. S., Chan, A. M., Kung, H. T., & Tarokh, V. (2007). Design of an OFDM cooperative space–time diversity system. IEEE Transactions on Vehicular Technology,56(4), 2203–2215.

    Article  Google Scholar 

  9. Mheidat, H., Uysal, M., & Al-Dhahir, N. (2007). Equalization techniques for distributed space–time block codes with amplify-and-forward relaying. IEEE Transactions on Signal Processing,55(5), 1839–1852.

    Article  Google Scholar 

  10. Li, Z., & Xia, X.-G. (2008). An Alamouti coded OFDM transmission for cooperative systems robust to both timing errors and frequency offsets. IEEE Transactions on Wireless Communications,7(5), 1839–1844.

    Article  Google Scholar 

  11. Yao, Y., & Dong, X. (2010). On the detection of distributed STBC AF cooperative OFDM signal in the presence of multiple CFOs. In IEEE ICC communications.

  12. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,16, 1451–1458.

    Article  Google Scholar 

  13. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space time block codes for orthogonal designs. IEEE Transactions on Information Theory,45, 1456–1466.

    Article  Google Scholar 

  14. Panayirci, E., Senol, H., & Poor, H. V. (2010). Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility. IEEE Transactions on Signal Processing,58(8), 4225–4238.

    Article  Google Scholar 

  15. Prasad, R., Murthy, C. R., & Rao, B. D. (2015). Joint channel estimation and data detection in MIMO–OFDM systems: A sparse bayesian learning approachs. IEEE Transactions on Signal Processing,63(20), 5369–5382.

    Article  Google Scholar 

  16. Zhong, K., Lei, X., & Li, S. (2013). Iterative channel estimation and data detection for MIMO–OFDM systems operating in time-frequency dispersive channels under unknown background noise. EURASIP Journal on Wireless Communications and Networking,2013, 182.

    Article  Google Scholar 

  17. Ishihara, T., & Sugiura, S. (2017). Iterative frequency-domain joint channel estimation and data detection of faster-than-Nyquist signaling. IEEE Transactions on Wireless Communications,16(9), 6221–6231.

    Article  Google Scholar 

  18. Abuthinien, M., Chen, S., Wolfgang, A., & Hanzo, L. (2007). Joint maximum likelihood channel estimation and data detection for MIMO systems. In IEEE ICC communications.

  19. Su, B., & Vaidyanathan, P. P. (2007). Performance analysis of generalized zero-padded blind channel estimation algorithms. IEEE Transactions on Signal Processing,14(11), 789–792.

    Article  Google Scholar 

  20. Zhang, Z., Zhang, W., & Tellambura, C. (2009). Cooperative OFDM channel estimation in the presence of frequency offsets. IEEE Transactions on Vehicular Technology,58(7), 3447–3459.

    Article  Google Scholar 

  21. Tao, J., Wu, J., & Xiao, C. (2008). Channel estimation for OFDM systems in the presence of carrier frequency offset and phase noise. In IEEE ICC communications.

  22. Jiang, F., Li, C., & Gong, Z. (2018). Accurate analytical BER performance for ZF receivers under imperfect channel in low SNR region for large receiving antennas. IEEE Signal Processing Letters,25(8), 1246–1250.

    Article  Google Scholar 

  23. Jacobs, L., & Moeneclaey, M. (2009). Effect of MMSE channel estimation on BER performance of orthogonal space–time block codes in rayleigh fading channels. IEEE Transactions on Communications,57(5), 1242–1245.

    Article  Google Scholar 

  24. Ju, M. C., Song, H. K., & Kim, I. M. (2009). Exact BER analysis of distributed Alamouti’s code for cooperative diversity networks. IEEE Transactions on Communications,57(8), 2380–2390.

    Article  Google Scholar 

  25. Wang, C., Au, E. K. S., Murch, R. D., Mow, W. H., Cheng, R. S., & Lau, V. (2007). On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error. IEEE Transactions on Wireless Communications,6(3), 805–810.

    Article  Google Scholar 

  26. Han, S., Ahn, S., Oh, E., & Hong, D. (2009). Effect of channel estimation error on BER performance in cooperative transmission. IEEE Transactions on Vehicular Technology,58(4), 2083–2088.

    Article  Google Scholar 

  27. Weinstein, S. B., & Ebert, P. M. (1971). Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication Technology,COM-19, 628–634.

    Article  Google Scholar 

  28. Gore, D. A., Heath, R. W., & Paulraj, A. J. (2002). Transmit selection in spatial multiplexing systems. IEEE Communication Letters,6(11), 491–493.

    Article  Google Scholar 

  29. Li, Y., Cimini, Jr, L. J., & Himayat, N. (December 2008). Performance analysis of space–time block coding with co-channel MIMO interferers. In IEEE “GLOBECOM”.

  30. Lu, J., Letaief, K. B., Chuang, J. C.-I., & Liou, M. L. (1999). M-PSK and M-QAM BER computation using signal-space concepts. IEEE Transactions on Communications,47(2), 181–184.

    Article  Google Scholar 

  31. Liu, X., & Su, W. (2007). BER performance analysis of the optimum ML receiver for decode-and-forward cooperative protocol. In IEEE ICASSP communications.

  32. Kaviani, S., & Tellambura, C. (2006). Closed-form BER analysis for antenna selection using orthogonal space–time block codes. IEEE Communications Letters,10, 704–706.

    Article  Google Scholar 

  33. Sriharsha, M. R., Dama, S., & Kuchi, K. (2017). A complete cell search and synchronization in LTE. EURASIP Journal on Wireless Communications and Networking,2017, 101.

    Article  Google Scholar 

  34. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 11.2.0 Release 11). www.3GPP.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Bouzidi Djebbar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besseghier, M., Djebbar, A.B., Zouggaret, A. et al. Joint channel estimation and data detection for OFDM based cooperative system. Telecommun Syst 73, 545–556 (2020). https://doi.org/10.1007/s11235-019-00622-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00622-3

Keywords

Navigation